

1	Estimating CCN number concentrations using aerosol optical properties:
2	Role of particle number size distribution and parameterization
3	
4	Yicheng Shen ^{1,2} , Aki Virkkula ^{2,1,3} , Aijun Ding ¹ , Krista Luoma ² , Helmi Keskinen ^{2,4} , Pasi P. Aalto ² ,
5	Xuguang Chi ¹ , Ximeng Qi ¹ , Wei Nie ¹ , Xin Huang ¹ ,
6	Tuukka Petäjä ^{2,1} , Markku Kulmala ² , Veli-Matti Kerminen ²
7	
8	¹ Joint International Research Laboratory of Atmospheric Sciences, School of Atmospheric Sciences,
9	Nanjing University, Nanjing, 210023, China
10	² Institute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, Finland
11	³ Finnish Meteorological Institute, Helsinki, Finland
12	⁴ Hyytiälä Forestry Field Station, Hyytiäläntie 124, Korkeakoski FI 35500, Finland
13	
14	Keywords: CCN, scattering coefficient, backscatter fraction, Ångström exponent
15	
16	Abstract
17	The concentration of cloud condensation nuclei (CCN) is an essential parameter affecting
18	aerosol-cloud interactions within warm clouds. Long-term CCN number concentration $(N_{\mbox{\tiny CCN}})$
19	data are scarce, there are a lot more data on aerosol optical properties (AOPs). It is therefore
20	valuable to derive parameterizations for estimating N_{CCN} from AOP measurements. Such
21	parameterizations have been made earlier, in the present work a new one is presented. The
22	relationships between AOPs, N_{CCN} and particle number size distributions were investigated
23	based on in-situ measurement data from six stations in very different environments around the
24	world. The parameterization derived here depends on the scattering Ångström exponent (SAE),
25	backscatter fraction (BSF) and total scattering coefficient ($\sigma_{sp})$ of PM10 particles. The analysis
26	showed that the dependence of N_{CCN} on supersaturation SS% is logarithmic:
27	$N_{CCN} \approx ((287 \pm 45) SAE_{10} ln(SS\%/(0.093 \pm 0.006))(BSF - BSF_{min}) + (5.2 \pm 3.3))\sigma_{sp}.$
28	At the lowest supersaturations of each site (SS% ≈ 0.1) the average bias, defined as the ratio of the
29	AOP-derived and measured N_{CCN} varied from ~0.7 to ~1.5 at most sites except at a Himalayan site
30	where bias was > 4. At SS% > 0.3 the average bias ranged from ~0.7 to ~1.3 at all sites. In other

words, at $SS\% > 0.3\ N_{CCN}$ was estimated with an average uncertainty of approximately 30% by 1 2 using nephelometer data. The squared correlation coefficients between the AOP-derived and 3 measured N_{CCN} varied from ~0.5 to ~0.8. The coefficients of the parameterization derived for the different sites were linearly related to each other. To study the explanation of this, lognormal 4 5 unimodal particle size distributions were generated and N_{CCN} and AOPs were calculated. The 6 simulation yielded similar relationships between the coefficients as in the field data. It also 7 showed that the relationships of the coefficients are affected by the geometric mean diameter 8 and width of the size distribution and the activation diameter.

9

10 1. Introduction

Aerosol-cloud interactions (ACI) are the most significant sources of uncertainty in estimating the radiative forcing of the Earth's climate system (e.g., Forster et al., 2007; Kerminen et al., 2012), which makes it more challenging to predict the future climate change (Schwartz et al., 2010). An essential parameter affecting ACI within warm clouds is cloud condensation nuclei (CCN) concentration, the number concentration of particles capable of initiating cloud droplet formation at a given supersaturation. Determining CCN concentrations and their temporal and spatial variations is one of the critical aspects to reduce such uncertainty.

18

19 CCN number concentrations (N_{CCN}) have been measured at different locations worldwide (e.g., 20 Twomey, 1959; Hudson, 1993; Kulmala et al., 1993; Hämeri et al., 2001; Sihto et al., 2011; 21 Pöhlker et al., 2016; Ma et al., 2014). However, the accessible data especially for long-term 22 measurement is still limited in the past and nowadays due to the relatively higher cost of 23 instrumentation and the complexity of long-term operating. As an alternative to direct 24 measurement, N_{CCN} can also be estimated from particle number size distributions and chemical 25 composition using the Köhler equation. Several studies have investigated the relative 26 importance of the chemical composition and particle number distributions (Dusek et al., 2006; 27 Ervens et al., 2007; Hudson, 2007; Crosbie et al., 2015). For the best of our understanding, the 28 particle number size distributions are more important in determining N_{CCN} than aerosol 29 chemical composition. This makes particle number size distribution measurements capable of

- 1 serving as a supplementary of direct CCN measurements.
- 2

3 Considering the tremendous spatiotemporal heterogeneity of atmospheric aerosol, neither 4 direct measurements of N_{CCN} of the concentrations estimated from particle size distribution are 5 adequate for climate research. In order to overcome the limitation of current measurements, 6 many studies have attempted to estimate N_{CCN} using aerosol optical properties (AOPs) (e.g., 7 Ghan et al., 2006; Shinozuka et al., 2009; Andreae, 2009; Jefferson, 2010; Liu et al., 2014; 8 Shinozuka et al., 2015; Tao et al., 2018). Most of these studies attempted to link N_{CCN} with 9 extensive AOPs, such as the aerosol extinction coefficient (σ_{ext}), aerosol scattering coefficient 10 (σ_{sp}) and aerosol optical depth (AOD). Both N_{CCN} and σ_{sp} are extensive properties that vary 11 with a varying aerosol loading. The most straightforward approach to estimate CCN is to utilize 12 the ratio between CCN and one of the extensive AOPs (e.g. AOD, $\sigma_{\text{ext.}} \sigma_{\text{sp}}$). However, the ratio 13 is not a constant. Previous studies have also pointed out that the relationship between N_{CCN} and 14 extensive AOPs are nonlinear. On one hand, Andreae (2009) reported that the relationship between AOD and CCN number concentration at the supersaturation of 0.4% (CCN_{0.4}) can be 15 written as $AOD_{500}=0.0027 \cdot (CCN_{0.4})^{0.640}$, which indicates AOT and CCN depend in a non-linear 16 17 way on each other: for a larger AOD there are more CCN per-unit change in AOD. On the other 18 hand, Shinozuka et al. (2015) indicated that the larger the extinction coefficient σ_{ext} was, the 19 fewer CCN were per unit change of σ_{ext} .

20

21 Some studies have also involved intensive aerosol optical properties, such as the scattering 22 Ångström exponent (SAE), hemispheric backscattering fraction (BSF) and single-scattering 23 albedo (SSA) to build up a bridge between the N_{CCN} and AOPs. Jefferson (2010) used BSF and SSA to parameterize the coefficients C and k to present $N_{CCN}(SS\%) = C \times (SS\%)^k$, where SS% 24 25 is the supersaturation percent (Twomey, 1959). Liu and Li (2014) discussed how different 26 aerosol properties affect the ratio of N_{CCN} to σ_{sp} , i.e., R_{CCN}/ σ_{sp} based on *in-situ* and remote-27 sensing data. Shinozuka et al. (2015) used SAE and aerosol extinction coefficient to estimate 28 N_{CCN}. Tao et al. (2018) used a novel method to derive the ratio R_{CCN}/σ_{sp} which they named as 29 ARsp, based on SAE and aerosol hygroscopicity using a humidified nephelometer. All the

- 1 studies mentioned above noted that the particle number size distribution (PNSD) plays an
- 2 important role in estimating N_{CCN} from aerosol optical properties.
- 3

In this study, we will introduce a new approach to estimate N_{CCN} , along with a brief discussion on how the ratio between N_{CCN} and σ_{sp} is related to BSF. The AOPs needed in our estimation are σ_{sp} , BSF and SAE obtained using a 3-wavelength nephelometer, either the TSI 3563 or Ecotech Aurora 3000. The main goal of this study is to provide a parameterization for calculating N_{CCN} using AOPs, and to probe the physical explanations behind this parameterization. The method will be applied to six different sites worldwide.

10

11 2. Methods

12 2.1 Sites and measurements

In-situ measurements of AOPs, PNSDs, and N_{CCN} were conducted at SMEAR II in Finland,
SORPES in China, and 4 ARM Climate Research Facility (ACRF) sites (Mather and Voyles,
2013). The locations and measurement periods are listed in Table 1.

16

17 The Station for Measuring Forest Ecosystem-Atmosphere Relations (SMEAR II) is located at 18 the Hyytiälä Forestry Field Station (61°51' N, 24°17' E, 181 m above sea level) of University 19 of Helsinki, 60 km north-east from the nearest city. The station represents boreal coniferous 20 forest, which covers ~8 % of the Earth's surface. Total scattering coefficient (σ_{sp}) and 21 hemispheric backscattering coefficient (σ_{bsp}) of sub-1 μ m and sub-10 μ m particles are measured 22 using a TSI-3563 3-wavelength integrating nephelometer at $\lambda = 450, 550, \text{ and } 700 \text{ nm}$. The 23 calibration, data processing, and calculation of AOPs followed the procedure described by 24 Virkkula et al. (2011) and Luoma et al. (2018). N_{CCN} was measured at supersaturations (SS%) 25 of 0.1%, 0.2%, 0.3%, 0.5% and 1.0% using a DMT CCN-100 CCN counter, likewise in 26 Schmale et al. (2017). A whole measurement cycle takes around 2 hours; data were interpolated 27 to hourly time resolution to compare with other measurements. Particle number size 28 distributions (PNSD) were measured with a custom-made Differential Mobility Particle Sizer 29 (DMPS) system in size range 3-1000 nm (Aalto et al., 2001). A more detailed description of

- 1 CCN measurements and station operation can be found in Sihto et al. (2011) and Paramonov et
- 2 al. (2015).
- 3

4 The Station for Observing Regional Processes of the Earth System (SORPES) is located at a 5 suburb of Nanjing, a megacity in the Yangtze River Delta municipal aggregation (32°07'14" N, 6 118°57'10" E; ~40m a.s.l.). σ_{sp} and σ_{bsp} of total suspended particles (TSP) are measured with 7 an Ecotech Aurora-3000 3-wavelength integrating nephelometer at $\lambda = 450, 525$, and 635 nm 8 as described by Shen et al. (2018). N_{CCN} is measured using a CCN-200 dual column CCN 9 counter at 5 supersaturations: 0.1%, 0.2%, 0.4%, 0.6% and 0.8%. The two columns make the 10 same cycle simultaneously to cross-check with each other. Each cycle takes 30 minutes. PNSD 11 in the size range of 6 - 800 nm are measured with a DMPS built by University of Helsinki. 12 More details of the measurements at SORPES are given by, e.g., Ding et al. (2013, 2016) and 13 Qi et al. (2015).

14

The US Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) measures 15 16 atmospheric aerosol and radiation properties all over the world. The first AMF (AMF1) was 17 deployed in 2005 with both a CCN counter and a nephelometer. Between 2011 and 2018, AMF1 18 is operated at four locations: Ganges Valley (PGH) in the Himalayas, Cape Cod, Massachusetts 19 (PVC) in a coastal area of U.S., Manacapuru (MAO) inside the Amazonian rain forest, and 20 Ascension Island (ASI) on the South Atlantic Ocean downwind from Africa. Three of them are 21 accompanied by a scanning mobility particle sizer (SMPS; Kuang, 2016). The SMPS is also 22 part of the Aerosol Observing System (AOS) running side by side with AMF1 since 2012. Both 23 PNSD and AOPs are available simultaneously at PVC, MAO, and ASI. σ_{sp} and σ_{bsp} of sub-1 24 µm and sub-10 µm particles are measured at all AMF1 locations by integrating nephelometers 25 (Uin, 2016a). The size range of the SMPS is around 11 - 465 nm with slightly different ranges 26 for different periods. N_{CCN} is measured at different supersaturations, details are in Table 1. The 27 supersaturations are typically calibrated before and after each campaign at an altitude similar to measurement site by instrument mentors according to CCN handbook (Uin, 2016b). Detailed 28 29 information about each dataset and measurement site can be found on AOS handbook

1 (Jefferson, 2011) or ARM web site (http://www.arm.gov/) and references thereby.

2	
3	Ganges Valley (PGH) is located in one of the largest and most rapidly developing sections of
4	the Indian subcontinent. The aerosols in this region have complex sources, including coal and
5	fuel combustion; biomass burning; automobile emissions; and dust. In monsoon seasons, dust
6	dominates the aerosol mass due to transportation (Dumka et al., 2017; Gogoi et al., 2015).
7	
8	PVC refers to the on-shore data set for the 'first column' of the Two-Column Aerosol Project
9	(TCAP) on Cape Cod, Massachusetts, USA. This is a marine site but still significantly affected
10	by anthropogenic emissions (Berg et al., 2016).

11

2

12 MAO refers to Manacapuru in Amazonas, Brazil. Manaus pollution plumes and biomass 13 burning impact the background conditions alternately. During the period we selected for this 14 study, no severe pollution episodes were observed. The σ_{sp} for PM10 never exceeded 250Mm⁻¹ 15 in this study.

16

Ascension Island (ASI) locates in the southeast Atlantic where westward transport of southern Africa biomass-burning aerosols emphases heavy aerosol loading. Air mass at this site usually a mixture with aged biomass-burning plume and sea-salt aerosol. The aerosol loading can be very low without plume, in this case, there is substantial uncertainty on the backscatter fraction.

The primary purpose of this study is to use as basic and readily accessible measurement data as possible to estimate N_{CCN}. Aerosol optical properties are measured for different cutoff diameters, usually 1 µm, 2.5 µm, 10 µm or TSP. At several stations there are two sets of AOPs using two cutoff diameters. For this study we chose to use AOP data with the 10 µm cutoff or TSP that are more universally used than smaller cutoff diameters.

27

28 2.2 Data processing

29 Regardless of the time resolution of raw data, all the data in this study were adjusted into hourly

- 1 averages before further analyses. Suspicious data within the whole dataset were removed
- 2 according to the following criteria:
- 3 1) for the size distribution data, all the data with unexplainable spikes were removed manually;
- 4 2) for CCN measurements, insufficient water supply may cause underestimation of CCN,
- 5 especially at lower supersaturation ratios (DMT, 2009). N_{CCN} reading at lower SS% has a
- 6 sudden drop a few hours before the similar sudden drop for higher SS% under such conditions,
- 7 so data from such periods were removed;
- 8 3) if any obvious inconsistencies between the AOPs and PNSD or between the N_{CCN} and PNSD
- 9 were found on closure study, all the data in the same hour were removed.
- 10

11 Special treatments were carried out for ASI dataset. There will inevitably be a considerable 12 uncertainty in the backscattering fraction if zero point of either σ_{sp} or σ_{bsp} is inaccurate in very 13 clean conditions. The measured σ_{sp} was in agreement with that calculated from the PNSD with 14 the Mie model. However, in the data σ_{bsp} approaches 0.3 Mm⁻¹ whenever σ_{sp} approaches 0. Thus, 15 we subtracted from back scattering coefficients a constant 0.3 Mm⁻¹ and no longer used any 16 data points with $\sigma_{sp} < 2$ Mm⁻¹ for this site to assure the data quality.

17

18 2.3 Light scattering calculated from the particle number size distributions

19 Light scattering coefficients were calculated using the Mie code similar to Bohren and Huffman 20 (1983) for SMEAR II. The refractive index was set to the average value of 1.517+0.019i 21 reported for SMEAR II by Virkkula et al.(2011). The wavelength for Mie modeling was set to 22 550 nm, which is same as in the measurements. The whole size range of the DMPS or the SMPS, 23 depending on the station, was used. The total scattering coefficient (σ_{sp}) and hemispheric 24 backscattering coefficient (σ_{bsp}) represent the scattering phase function integrated over the 25 scattering angles of 0-180° and 90-180°, respectively. The backscatter fraction (BSF) is the 26 ratio between σ_{bsp} and σ_{sp} .

1 2.4 CCN number concentration calculated from the particle number size distribution

- 2 Under the assumption of fully internally mixed particles, the CCN number concentration
- $\label{eq:calculated} 3 \qquad \mbox{calculated from the particle number size distributions} \ (N_{CCN}(PNSD)) \ \mbox{is obtained by integrating}$
- 4 the PNSD of particles larger than the critical dry particle diameter (D_m) :

$$N_{CCN}(PNSD) = \int_{D_m}^{\infty} n(\log D_p) d\log D_p$$
(1)

At a given SS. D_m is a diameter above which all particles can act as CCN. For a selected dry
diameter of a particle having given hygroscopicity is computed from the maximum of: The
Critical Diameter D_m is the minimum dry diameter (D_d) that ensure the κ-Köhler curve (Petters
and Kreidenweis, 2007) to have one real solution:

10
$$S(D) = \frac{D^3 - D_d^3}{D^3 - D_d^3 (1 - \kappa)} \exp\left(\frac{4\sigma_{s/a}M_w}{RT\rho_w D}\right).$$
(2)

Here D_d is the dry diameter, σ_{s/a} is the surface tension of the solution/air interface, *R* is the
universal gas constant, *T* is temperature, and *D* is the diameter of the droplet, ρ_w is the density
of water, M_w is the molecular weight of water, and κ is the hygroscopicity parameter. *S*(D) in
this particular case is set to the same supersaturation ratio as CCN being measured (e.g., 0.1%,
0.2%, 0.3%, 0.5% and 1.0% for SMEAR II).

16

5

The accuracy of $N_{CCN}(PNSD)$ is affected by the treatment of κ . In this study, we are not trying 17 18 to achieve an accurate value of k but instead want to illustrate that even an arbitrary setting of 19 κ can yield reasonable CCN concentrations. This approach is named as 'unknown chemical 20 approach' in (Kammermann et al., 2010) and as 'Prediction of N_{CCN} from the constant κ ' in Meng et al., (2014). Both of them give a detailed discussion of how this approach performs. 21 22 Arbitrary κ is not performing as good as a proper κ when calculating N_{CCN}, yet we believe that 23 it is good enough to be an alternative to measuring CCN in the empirical estimation of this 24 study. Wang et al. (2010) also claimed that N_{CCN}(PNSD) may be successfully obtained by 25 assuming an internal mixture and using bulk composition few hours after emissions. For 26 SORPES, ASI and PVC, we simply set a global-average value of 0.27 for κ (Pringle et al., 2010; 27 Kerminen et al., 2012). For the forest sites, SMEAR II and MAO, we set $\kappa = 0.12$, which is

- 1 close to the value of κ for Aitken mode particles reported previously by studies at forest sites
- 2 (Sihto et al., 2011; Hong et al., 2014).
- 3

4 2.5 Aerosol optical properties and CCN concentrations of simulated size distributions

For studying the relationships of particle size, N_{CCN} and AOPs we generated unimodal particle number size distributions n_{um} (GMD,GSD) with varying the geometric mean diameter (GMD) and geometric standard deviation (GSD). For them we calculated the same AOPs with the Mie model as were obtained from the real measurements from the stations σ_{sp} and σ_{bsp} and from these the BSF at the wavelengths $\lambda = 450$, 550 and 700 nm. N_{CCN} was calculated simply by integrating number concentrations of particles larger than a critical diameter of 80 nm, 90 nm, 100 nm, and 110 nm.

12

13 3. Overview of measured properties

14 At SMEAR II the average values of σ_{sp} at $\lambda = 550$ nm in PM₁ and PM₁₀ were 11.2 and 13.7 Mm⁻ 15 ¹ and corresponding backscattering fractions were 0.162 and 0.155, respectively, during our 16 study period. These values are consistent with those reported by Virkkula et al. (2011). The 17 average \pm standard deviation N_{CCN} was 129 \pm 99, 303 \pm 228, 391 \pm 303, 512 \pm 384 and 736 \pm 18 492 cm⁻³ at SS% of 0.1, 0.2, 0.3, 0.5 and 1.0%, respectively. The CCN spectrum here did not 19 quite follow the traditional fitting $N_{CCN}(CSK) = C \times SS\%^k$ (Jefferson 2010, Twomey 1959). 20 One year average–N_{CCN}(CSK) at SMEAR II for SS=0.1% is 197/cm³, 53% higher than 21 $N_{\rm CCN}$ (mea) for the same period. Also, R^2 of the linear regression between $N_{\rm CCN}$ (CSK) and 22 $N_{\rm CCN}$ (mea) is 0.78 at SS=1.0%, which means that Jefferson's method performs approximately 23 as well for SMEAR II as at the other sites presented by Jefferson (2010). However, our 24 motivation is to develop a method that needs no absorption data.

25

26 3.1 AOPs and CCN calculated from particle size distributions

Aerosol optical properties calculated from particle number size distributions matched well with the measured scattering coefficients in PM₁. For σ_{sp} larger than about 40 Mm⁻¹, the calculated values were slightly lower than the measured ones. The measured and calculated BSF also

- 1 matched well with $r^2=0.93$ for the data with $\sigma_{sp}>10$. Another quality check of the CCN data is
- 2 that the $N_{\text{CCN}}(\text{PNSD})$ calculated from Eq.(1) was consistent with the measured CCN number
- 3 concentration N_{CCN} (meas): for the linear regression r^2 was 0.80, 0.91 0.94 and 0.92 for SS=0.1%,
- 4 0.2%, 0.5% and 1.0%, respectively, and the corresponding slopes varied between 0.85 and ~1.2
- 5 depending on the value of SS%. The correlation between $N_{\rm CCN}$ (PNSD) and $N_{\rm CCN}$ (meas) was the
- 6 weakest for the lowest set of supersaturation (0.1%), most probably because the measurement
- 7 uncertainty is much higher at lower values of SS% compared with higher SS% for DMT CCN
- 8 counter (Rose et al., 2008).
- 9

10 3.2 Relationships between AOPs and CCN

11 The correlation between N_{CCN} and σ_{sp} was weak at SMEAR II, especially for higher 12 supersaturations (Fig 1). In spite of this, when color-coded with respect to BSF, the relationship 13 between N_{CCN} and σ_{sp} becomes clear: the scatter plot points of N_{CCN} grows almost linearly as a 14 function of σ_{sp} for a narrow range of values of BSF. This indicates BSF can serve as a good 15 proxy for describing the ratio between N_{CCN} and σ_{sp} at SMEAR II.

16

Hereafter, we will use the term R_{CCN/σ} = N_{CCN/σsp} to describe the relationship between CCN
concentration light scattering and similar to Liu and Li (2014). Note that this same ratio was
defined as AR_{scat} in Tao et al. (2018). R_{CCN/σ} varies over a wide range of values, so a proper
parameterization to describe it is of significance.

21

22 4. Development of the parameterization

23 4.1 Site-dependent parameterization for each measured supersaturation, N_{CCN}(AOP₁)

24 The first step in the development of the parameterization was to calculate linear regressions of

25 $R_{CCN/\sigma}$ vs BSF. $R_{CCN/\sigma}$ depends clearly on BSF (Fig. 2) as

$$R_{CCN/\sigma} = a BSF + b$$
(3)

27 At SMEAR II the correlation between BSF and $R_{CCN/\sigma}$ is strong when $\sigma_{sp} > 10 \text{ Mm}^{-1}$. At $\sigma_{sp} < 10 \text{ Mm}^{-1}$

28 10 Mm⁻¹ the uncertainty of the nephelometer is higher which may at least partly explain the

29 lower correlation. For each dataset and individual supersaturation, *a* and *b* the slope and offset

1 of the linear regressions has a different value as presented in Table 2. The parameterization 2 gives the formula for calculating $N_{CCN}(AOP)$, ie, N_{CCN} calculated from measurements of AOPs: 3 $N_{CCN}(AOP_1) = (a_{SS\%} *BSF + b_{SS\%}) \cdot \sigma_{sp}$ (4) 4 The subscript 1 for AOP₁ indicates the first set of parameterization.

5

6 Scatter plots of $N_{\rm CCN}(\rm AOP_1)$ vs $N_{\rm CCN}(\rm meas)$ are presented for the supersaturations used at the SMEAR II CCN counter in Fig 3 and for the highest and the lowest SS% used at the other 7 8 stations in Fig 4. At SMEAR II this approach yields R² of 0.70, 0.86, 0.75 and 0.55 for SS=0.1%, 9 0.2%, 0.5% and 1.0%, respectively, and the slopes (and intercepts) are 0.95(13), 0.92(28), 10 0.86(52) and 0.76(87), respectively. All slopes are slightly less than 1 and the intercept are 11 slightly over 0. One explanation is that when both x and y have uncertainties, the least-squares 12 method in the linear regression trend to underestimates the slope (Cantrell, 2008). N_{CCN}(AOP₁) 13 overestimates (or underestimates) N_{CCN}(meas) by 4.8%, 1.2%, -4.2% and -12.5% at the above 14 specified supersaturations. For the overall dataset regardless of supersaturations, R^2 , 15 slope(intercept) and difference between $N_{CCN}(AOP_1)$ and $N_{CCN}(meas)$ are 0.73, 0.81(56) and -16 5.1% respectively.

17

18 R^2 between $N_{\text{CCN}}(\text{AOP}_1)$ and $N_{\text{CCN}}(\text{meas})$ is higher at lower supersaturations than at higher 19 supersaturations in most of the scatter plots shown in Figures 3 and 4. The reasonable 20 explanation is that the higher the supersaturation is the smaller are the particles that can act as 21 CCN. The smaller are the particles the less do they contribute to both total scattering and 22 backscattering and the higher is the relative uncertainty of both of them and thus also the 23 uncertainty of $N_{\text{CCN}}(\text{AOP}_1)$.

24

25 4.2 General combined parameterization N_{CCN}(AOP₂)

26 In the next step, the slopes and offsets obtained from the linear regression (Table 2) were plotted as

a function of SS% (Fig 5). The data obviously depend logarithmically on SS% so that (4) becomes

28
$$N_{ccN}(AOP_2) = (a_{ss}BSF + b_{ss})\sigma_{sp} = ((a_1\ln(SS\%) + a_0)BSF + b_1\ln(SS\%) + b_0)\sigma_{sp}$$
 (5)

29 The coefficients a_0, a_1, b_0 and b_1 obtained from the regression of $a_{SS\%} = a_1 \ln(SS\%) + a_0$ and $b_{SS\%} = a_1 \ln(SS\%) + a_0$.

1 $b_1 \ln(SS\%) + b_0$ for each station are presented in Table 3. The relationships of the coefficients can 2 be used for a combined, more general parameterization. Obviously the a_0 vs. a_1 , b_0 vs. b_1 , a_1 vs. b_1 3 and b_0 vs. b_0 pairs from all stations follow very accurately same lines (Fig 6). This suggests that 4 there is some underlying reason for it. Linear regressions yielding $a_0 = (2.38 \pm 0.06)a_1$, $b_0 = (2.33 \pm 0.03)b_1$, and $b_1 = (-0.097 \pm 0.013)a_1 + (6.4 \pm 5.9)$ were used, after the simple algebra in the 6 supplement, to get 7 $N_{ccv}(AOP_2) \approx (\ln(SS\%) + (2.38 \pm 0.06))(a_1(BSF - (0.097 \pm 0.013)) + (6.4 \pm 5.9))\sigma_{sp}$

$$\approx \ln\left(\frac{55\%}{0.093 \pm 0.006}\right) (a_1(BSF - (0.097 \pm 0.013)) + (6.4 \pm 5.9))\sigma_{sp}$$
(6)

8 where both the coefficient a_1 and the constant 6.4 ± 5.9 have units of $[N_{CCN}]/[\sigma_{sp}] = cm^{-3}/Mm^{-1}$. This 9 is the general formula for the parameterization. In both (5) and (6) the only unquantified coefficient 10 is now a_1 . However, we can find some ways to quantify also it.

11

For a given station, if there are simultaneous data of N_{CCN} (meas) and σ_{sp} for some reasonably long period, (6) can be adjusted. Instead of subtracting (0.097 ± 0.013) from BSF the minimum BSF = BSF_{min} in the data set will be used. Further, when BSF = BSF_{min} the factor $a_1(BSF - BSF_{min}) =$ 0 and $N_{CCN}(AOP_2) \approx R_{min}\sigma_{sp}$ where R_{min} is the minimum $R_{CCN/\sigma}$ in the data set. It follows that

16
$$N_{ccv}(AOP_2) \approx \left(a_1 \ln\left(\frac{SS\%}{0.093 \pm 0.006}\right) (BSF - BSF_{min}) + R_{min}\right) \sigma_{sp}$$
(7)

17 The derivation of (7) is shown in the supplement. In the data processing the 1^{st} percentiles of 18 both BSF and $R_{CCN/\sigma}$ are used as BSF_{min} and R_{min} , respectively. Here the free parameters are a_1 , 19 BSF_{min} and R_{min}. The coefficient a₁ is positively correlated with SAE. The linear regressions of a₁ 20 and the average and median scattering Ångström exponent of PM_{10} particles (SAE₁₀) (Table 3) at 21 the 6 sites in the analyzed periods yield $a_1 \approx (298 \pm 51)SAE_{10} \text{ cm}^{-3}/\text{Mm}^{-1}$ and $a_1 \approx (287 \pm 45)SAE_{10}$ 22 cm⁻³/Mm⁻¹, respectively (Fig. 7). The uncertainties are large but, the main point is that the 23 correlations show that a1 and thus N_{CCN}(AOP) is the higher the higher SAE10 is. R_{min} was estimated 24 by calculating the 1st percentile of $R_{CCN/\sigma}$ at each site at each SS%. The average and standard 25 deviation of R_{min} was 5.2 \pm 3.3 cm⁻³/Mm⁻¹. Consequently the parameterization becomes

26
$$N_{CCV}(AOP_2) \approx \left((287 \pm 45) \text{SAE}_{10} \cdot \ln \left(\frac{55\%}{0.093 \pm 0.006} \right) (BSF - BSF_{\min}) + (5.2 \pm 3.3) \right) \sigma_{sp}$$
 (8)

27

1 5. Results and discussion

$2 \qquad 5.1 \ Comparison \ of \ N_{CCN} \ from \ the \ AOP \ parameterization \ and \ measurements$

3 The parameterization in Eq (8) was applied to the data of the 6 stations and N_{CCN}(AOP₂) was

4 compared with the N_{CCN}(meas) at the supersaturations used in the respective CCN counters.

5 The results are presented as scatter plots of of N_{CCN}(AOP₂) vs. N_{CCN}(meas) (Fig 8a and 8b), the

 $6 \qquad \mbox{bias of the parameterization calculated as $N_{CCN}(AOP_2)/N_{CCN}(meas)$ (Fig 8c) and the squared}$

7 correlation coefficient R² of the linear regression of N_{CCN}(AOP₂) vs. N_{CCN}(meas) (Fig 8d).

8

9 At the site-specific lowest SS% the scatter plots of N_{CCN}(AOP₂) vs. N_{CCN}(meas) of data from 10 most stations get clustered along the 1:1 line, but for the Himalayan site PGH the 11 parameterization yields significantly higher concentrations (Fig 8a). It was mentioned above 12 that we applied also the Jefferson (2010) parameterization to SMEAR II data. At SS=0.1% the 13 average $N_{\rm CCN}(\rm CSK)$ was 53% higher than $N_{\rm CCN}(\rm meas)$ and R^2 of the linear regression was 0.78 14 at SS=1.0%. The bias of our method at SS% = 0.1 was ~0.66 so it underestimated measurements 15 by 34% and $R^2 \approx 0.65$ (Fig 8), lower than that of Jefferson (2010). At SS% > 0.3 the bias varied 16 from 1.1 to 1.3. At the highest SS% the deviations from the 1:1 line are smaller also for PGH 17 (Fig 8b). At PGH at the lowest SS% the bias is > 4 but decreases to $\sim 1.1-1.2$ at SS% = 0.4% 18 and even closer to 1 at higher SS%. At SS% > 0.4% the AOP-derived N_{CCN} is higher than the 19 measured concentration at four sites with their bias varying between ~1.1 and ~1.3. For the US 20 coastal site PVC the parameterization constantly underestimates the CCN concentrations by 21 about 30%. For the Amazonian site MAO the bias is close to 1 at the lowest SS% but for the 22 higher SS% it varies from 0.68 to 0.79.

23

24 5.2 Evaluation of the effect of particle size distribution to the parameterization

The linear relationships of the coefficients of Eq. (5) are so clear (Fig. 6) that there should be some common underlying reason. To study this we generated lognormal unimodal size distributions as explained in section 2.5. GMD was given logarithmically evenly-spaced values from 50 nm to 1600 nm and GSD was given two values: 1.5 representing a relatively narrow size distribution and 2.0 a wide size distribution. We then calculated AOPs, N_{CCN} and R_{CCN/σ}

- 1 for these size distributions.
- 2

The reasoning for the approach of estimating N_{CCN} from σ_{sp} and BSF can easily be explained by the similar variations of $R_{CCN/\sigma}$ and BSF (Fig. 9). $R_{CCN/\sigma}$ is the highest for the smallest particles, i.e. for GMD = 50 nm and it decreases with the growing GMD as also BSF. Note that the width of the size distribution has very strong effects on $R_{CCN/\sigma}$: for the wide size distribution it is approximately an order of magnitude lower than for the narrow size distribution.

8

9 Note also that the rates of decrease of $R_{CCN/\sigma}$ and BSF. We used this information for estimating 10 particle sizes with a stepwise linear regression. An example is given by the linear regressions 11 of $R_{CCN/\sigma}$ vs. BSF calculated for 5 consecutive size distributions, first for those that have their 12 GMDs from 50 nm to 100 nm and the second for those that have their GMDs from 100 nm to 13 200 nm (Fig. 10). Note that it is obvious that linear regressions are applicable for short intervals 14 but do not well for the whole size range. The absolute values of the slopes and offsets are clearly lower for the larger particle size range. The particle size that is used for describing the size 15 16 range of each regression we define here as the equivalent geometric mean diameter GMDe, the 17 geometric mean of the range of the GMDs of the unimodal size distributions used for each 18 regression. It will be shown below that GMD_e is a mathematical concept helping in explaining 19 the observed relationships, not an actual GMD of the particle size distribution at the sites.

20

For the wide size distributions the slopes and offsets of the regressions of $R_{CCN/\sigma}$ vs. BSF decrease and increase, respectively, monotonically with an increasing GMD_e in the whole size range studied here (Fig. 11). For the narrow size distribution the slope decreases to GMD_e \approx 300 nm and then increases which means there is no unambiguous relationship between them.

25

Note also that the ranges of the absolute values of the slopes and offsets of the wide and narrow size distributions are very different. However, they decrease and increase simultaneously. This is the link to the observations from the field stations. We plotted the offset. vs slope of the unimodal size distributions and those obtained from the linear regressions of the field data at

- 1 the supersaturatios presented in Table 2 and below it the GMD_e vs. the slopes of the regressions
- 2 of the unimodal size distributions (Fig 12). In Fig. 12 also the effect of the choice of the
- 3 activation diameters of 80 nm, 90 nm, and 110 nm is shown.
- 4

5 Several observations can be made of Fig. 12. First, for the simulated wide size distributions the 6 relationship of the offset and slope is unambiguous but not for the narrow size distributions at 7 sizes $GMD_e > \sim 200$ nm (Fig 12b). Secondly, the field data points obviously follow the lines of 8 the simulations. This supports the approach for the interpretation of the relationships presented 9 above (Fig. 6) for the coefficients in Eq. (5). Especially, note the similar ranges of b_0 vs a_0 in 10 Fig 6d and the ranges of b vs a in Fig 12a. This is the link to Eq. (5): if we set SS% = 1, the 11 equation reduces to $N_{CCN} = (a_0 BSF + b_0)\sigma_{sp}$. Together with the clear linear relationships between 12 the coefficients this suggests that the coefficients of Eq. (5) depend on the GMD and GSD of 13 the particle size distributions.

14

Most field data agree well with the b vs. a line of the unimodal wide size distribution with the lowest activation diameter of 80 nm. For instance, the PVC data point corresponding to the highest supersaturation has the highest slope (1970 cm⁻³/Mm⁻³, Table 2) and it is close to the above-mentioned line (Fig. 12a). The corresponding GMD_e of the unimodal size distribution is also ~80 nm (Fig 12b). The SMEAR II high SS% offset vs. slope fits best with the corresponding lines of the narrow unimodal size distributions with all activation diameters and the corresponding GMD_e \approx 150 – 180 nm.

22

At the lowest SS% the offset vs. slope points of all stations agree with the lines derived from the lines derived from the unimodal modes. This is interesting considering the high uncertainties involved in the regressions at the lowest SS% (Fig. 2). For ASI the slopes and offsets of the lowest and highest SS% are especially close to each other, closer than at any other station (Fig. 12a), and the corresponding $GMD_e \approx 750$ nm and 400 nm, respectively, when the GMD_e vs. a relationship of any of the wide distributions is used (Fig. 12b). For PGH at the lowest SS% the slope is actually negative which is not obtained from the simulations at all so

- 1 no GMD_e cannot be given for it.
- 2

3 5.3 Aerosol size characteristics for all site

4 As it was shown above, particle size distributions affect the coefficients of the parameterization. It

5 is therefore discussed here how the size distributions vary at the six sites of the study and whether

6 they support the interpretations presented above. The size distributions are discussed using the

7 particle number size distribution and the ratios of σ_{sp} of PM₁ and PM₁₀ size ranges data from those 8 stations where they are available.

- 9
- 10

11 5.3.1 Diurnal variation of particle number size distribution

Fig. 13a shows the averaged diurnal cycle of PNSD at the sites where either a DMPS or SMPS is available. New particle formation (NPF) events is a significant source of uncertainty in the prediction of N_{CCN} (Kerminen et al., 2012; Ma et al., 2016). Complete NPF events start from a burst of sub 10 nm particles and continuous growing up to a few hundred nanometers. As a result, the size distribution varies significantly. NPF is one possible explanation of the poor N_{CCN}- σ_{sp} correlation.

18

SMEAR II and SORPES are reported to have an appreciable frequency of NPF (Kulmala et al., 2004; Dal Maso et al., 2005; Sihto et al., 2006; Qi et al., 2015). Continuous growth in particle size at SORPES can usually last for several days after NPF (Shen et al. 2018). Similar growth patterns have also been observed in the Two-Column Aerosol Project (TCAP; <u>http://campaign.arm.gov/tcap/;</u> refers as PVC in this study) according to Kassianov et al. (2014). NPF is rarely observed in the Amazon forest where MAO is located. However, it does take place also at MAO as is shown in the diurnal cycle of PNSD. At ASI, there no evidence of NPF according to the PNSD diurnal cycle.

27 These observations of the NPF are compared with the bias and correlation coefficients of the
28 parameterization discussed in section 5.1 (Fig. 8). The correlation coefficient of N_{CCN}(AOP₂) vs.
29 N_{CCN}(meas) is the highest, R² ≈ 0.8 at all SS% at ASI where no NPF takes place and clearly lower

- 1 at the other sites (Fig 8d). For the bias NPF appears not to have a clear influence: for both SMEAR
- 2 II and SORPES bias varies from ~ 1.1 to ~ 1.4 at SS% > 0.1%.
- 3

4 5.3.2 Distribution of geometric mean diameter

Figure 13b presents the normalized distribution of the geometric mean diameter at SMEAR II,
SORPES, PVC, MAO and ASI. It varies from 20 nm to 200 nm at all sites, with the most
frequent GMD between ~70 nm and ~120 nm depending on the site. This shows clearly that
the above-presented equivalent geometric mean diameter GMD_e calculated assuming a
unimodal size distribution is not a quantitative GMD of the size distribution, it is a mathematical
concept that explains partially the relationships of R_{CCN/σ} and BSF.

11

12 The frequency distribution of GMD at SMEAR II is the widest among five sites with PNSD data 13 available, followed by SORPES and PVC. At MAO the frequency distribution of GMD has two 14 peaks in this study, different from that at ATTO in Amazonas (Schmale et al., 2018)). The lower 15 peak is possibly due to the burst of sub-20 nm particles since they have little chance to grow to sizes 16 that can serve as CCN. The second peak around 100 nm possibly represents the GMD without the 17 burst of sub-20 nm particles and it is distinctly narrower than at SMEAR II, SORPES and PVC.

18

A comparison of the correlation coefficients of $N_{CCN}(AOP_2)$ vs. $N_{CCN}(meas)$ (Fig. 8) and the widths of the GMD frequency distributions (Fig. 13b) does not show any clear relationships between them, other than that of ASI. The frequency distribution of GMD is the narrowest at ASI indicating that the average particle size does not change much throughout the whole period. This is in line with the low variation of the slope and offset of the R_{CCN} vs BSF of ASI (Fig 12a). At ASI also the correlation coefficient of N_{CCN}(AOP₂) vs. N_{CCN}(meas) is the highest, R² \approx 0.8 at all SS%.

25

26 5.3.3 Contribution of light scattering by sub-µm particles

27 There is one more measure related to particle size distribution, the ratio between σ_{sp} of sub-1 µm 28 and sub-10 µm aerosol ($\sigma_{sp}(PM_1)/\sigma_{sp}(PM_{10})$). At SMEAR II, the contribution of submicron particles 29 usually varies within range 0.8~0.9 and it is the highest among all sites in this study. PVC has two

1 peaks in the $\sigma_{sp}(PM_1)/\sigma_{sp}(PM_{10})$ distribution, the peak around 0.2 corresponds to air masses from 2 the sea, with a very low scattering coefficient and N_{CCN}. By ignoring the cleanest air masses (σ_{sp} <5 3 Mm⁻¹), the fraction of $\sigma_{sp}(PM_1)/\sigma_{sp}(PM_{10})$ is usually around 0.8, which is just slightly lower than at 4 SMEAR II. At PGH and MAO, the distribution of the ratio is wider, and the peak position is around 5 0.65. The overall contribution of sub-µm particle light scattering at PGH is moderate among the 6 sites in this study. At ASI $\sigma_{sp}(PM_1)/\sigma_{sp}(PM_{10})$ is the lowest among all sites in this study, indicating 7 that particles larger than 1 µm contribute a considerable fraction of light scattering. For SORPES 8 $\sigma_{sp}(PM_1)/\sigma_{sp}(PM_{10})$ is not available.

9

10 Among those five sites, when $\sigma_{sp}(PM_1)/\sigma_{sp}(PM_{10})$ decreases, the correlation between BSF and 11 $R_{CCN/\sigma}$ decreases. At some sites (e.g., ASI) the BSF of PM₁₀ is often be even larger than that of PM₁ 12 which is most probably an error in the measurements but it may also be due to non-spherical 13 particles like sea salt and dust, which will blur the correlation between BSF and R_{CCN/σ}. In such a 14 case the increase of the amount of large particles leads to an increase of BSF and a decrease of 15 $R_{CCN/\sigma}$ which is opposite to the usual positive correlation between BSF and $R_{CCN/\sigma}$ in this study. 16 Thus, the lower $\sigma_{sp}(PM_1)/\sigma_{sp}(PM_{10})$ may in principle result in a poor performance of our method. 17 However, a comparison of the correlation coefficients and the $\sigma_{sp}(PM_1)/\sigma_{sp}(PM_{10})$ frequency 18 distributions of each site shows the opposite. At the highest SS% of each site the R^2 in a decreasing 19 order is ASI, PGH, MAO, SORPES, SMEAR II, and PVC (Fig. 8d). The peaks of the frequency 20 distribution of $\sigma_{sp}(PM_1)/\sigma_{sp}(PM_{10})$ are, in a growing order, ASI: 0.375, PGH: 0.625, MAO: 0.65, 21 PVC: 0.825, SMEAR II: 0.875. Note that at SORPES there is only one size range measured. Of 22 these only PVC and SMEAR II are not in the same order. On the other hand, the bias at the highest 23 SS% has no clear relationship with $\sigma_{sp}(PM_1)/\sigma_{sp}(PM_{10})$: for MAO our parameterization 24 underestimates the N_{CCN} the most (bias ≈ 0.68) and for ASI it overestimates the most (bias ≈ 1.28). 25

26 6. Conclusions

27 The relationships between aerosol optical properties, CCN number concentrations (N_{CCN}) and 28 particle number size distributions were investigated based on in-situ measurement data from 29 six stations in very different environments around the world. The goal of the work was to find

- 1 a parametrization to obtain N_{CCN} from sites where AOPs are measured but no CCN counter is
- 2 available.
- 3
- There are many previous parameterizations for doing just the same. As a starting point we used the
 parameterization presented by Jefferson (2010). That one needs also absorption measurements since
 it includes single-scattering albedo. We instead studied how the parameterization would look like if
- 7 only total scattering and backscattering data were available.
- 8
- 9 The basic idea for the parameterization is that N_{CCN} is proportional to σ_{sp} and a function of the 10 backscatter fraction (BSF), as is also in the parameterization of Jefferson (2010). One clear 11 difference is that our data analysis showed that the dependence on supersaturation is logarithmic, 12 different from that of Jefferson (2010). Actually this result is qualitatively in line with the 13 relationship between AOD and CCN reported by Andreae (2010).
- 15 The coefficients of the parameterization derived for the different sites showed that they appear 16 to be linearly related to each other. A simulation with unimodal size distributions showed that 17 the relationships are affected by the size and width of the size distribution and the activation 18 diameter.
- 19

We were able to derive a parameterization that describes all sites. The parameterization not only
depends on BSF but also on the wavelength dependency of scattering, i.e. the scattering
Ångström exponent SAE. Further studies need to be done to compare different
parameterizations for data from various different sites.

24

25 Author contributions

YS carried out measurements at SORPES in China, analyzed and visualized data of all sites, and wrote the original draft. AV contributed to data analysis and visualization, writing and editing the original draft, and supervised the work of YS in Finland. AD provided funding for the measurements and research at SORPES in China, acquired funding for YS in China, and supervised the work of

- 1 YS. KL, HK and PA carried out measurements, data collection and maintenance of measurement
- 2 data of SMEAR II in Finland. YS, XC, XQ, WN and XH carried out measurements, data collection
- 3 and maintenance of measurement data of SORPES in China. MK and TP provided the funding for
- 4 YS in Finland. MK provided funding for the measurements and research at SMEAR II in Finland.
- 5 TP and VMK formulated the goals of the research and supervised it.
- 6

7 Acknowledgments

8 This work was supported by National Natural Science Foundation of China (41725020), 9 Academy of Finland via Center of Excellence in Atmospheric Sciences (project no. 272041), 10 the Centre for International Mobility CIMO of the Finnish Government Scholarship Pool 11 programme, and the Collaborative Innovation Center of Climate Change supported by the 12 Jiangsu 2011 Program. Data were also obtained from the Atmospheric Radiation Measurement 13 (ARM) User Facility, a U.S. Department of Energy (DOE) Office of Science user facility 14 managed by the Office of Biological and Environmental Research. For the SMEAR II data we thank the SMEAR II technical team. Y. Shen was supported by the CSC-Finnish joint PhD 15 16 studentship.

17

18 References

Aalto, P., Hämeri, K., Becker, E., Weber, R., Salm, J., Mäkelä, J., Hoell, C., O'dowd, C.,
Hansson, H.-C., Väkevä, M., Koponen, I., Buzorius, G., and Kulmala, M.: Physical
characterization of aerosol particles during nucleation events, Tellus B, 53, 344–358,
https://doi.org/10.3402/tellusb.v53i4.17127, 2001.

23

Andreae, M. O.: Correlation between cloud condensation nuclei concentration and aerosol
optical thickness in remote and polluted regions, Atmos. Chem. Phys., 9, 543–556,
https://doi.org/10.5194/acp-9-543-2009, 2009.

- 27
- 28 Berg, L. K., Fast, J. D., Barnard, J. C., Burton, S. P., Cairns, B., Chand, D., Comstock, J. M.,
- 29 Dunagan, S., Ferrare, R. A., Flynn, C. J., Hair, J. W., Hostetler, C. A., Hubbe J., Jefferson, A.,

- 1 Johnson, R., Kassianov, E. I., Kluzek, C. D., Kollias, P., Lamer, K., Lantz, K., Mei, F., Miller,
- 2 M. A., Michalsky, J., Ortega, I., Pekour, M., Rogers, R. R., Russell, P. B., Redemann, J.,
- 3 Sedlacek III, A. J., Segal-Rosenheimer, M., Schmid, B., Shilling, J. E., Shinozuka, Y.,
- 4 Springston, S. R., Tomlinson, J. M., Tyrrell, M., Wilson, J. M., Volkamer, R., Zelenyuk, A., and
- 5 Berkowitz, C. M.: The Two-Column Aerosol Project: Phase I Overview and impact of
- 6 elevated aerosol layers on aerosol optical depth, J. Geophys. Res.-Atmos., 121, 336–361, 2016.
- 7

8 Bohren, C. F. and Huffman, D. R.: Absorption and scattering of light by small particles, 1st ed.

- 9 Wiley, New York, 57–81, 1983.
- 10

Cantrell, C. A.: Technical Note: Review of methods for linear leastsquares fitting of data and
application to atmospheric chemistry problems, Atmos. Chem. Phys., 8, 5477–5487,
doi:10.5194/acp-8-5477-2008, 2008.

14

Crosbie, E., Youn, J.-S., Balch, B., Wonaschütz, A., Shingler, T., Wang, Z., Conant, W. C.,
Betterton, E. A., and Sorooshian, A.: On the competition among aerosol number, size and
composition in predicting CCN variability: a multi-annual field study in an urbanized desert,
Atmos. Chem. Phys., 15, 6943-6958, https://doi.org/10.5194/acp-15-6943-2015, 2015.

19

20 Dal Maso, M., Kulmala, M., Riipinen, I., Wagner, R., Hussein, T., Aalto, P. P., and Lehtinen, K.

E. J.: Formation and growth of fresh atmospheric aerosols: eight years of aerosol size
distribution data from SMEAR II, Hyytiälä, Finland, Boreal Environ. Res., 10, "323–336, 2005

- Ding, A. J., Fu, C. B., Yang, X. Q., Sun, J. N., Zheng, L. F., Xie, Y. N., Herrmann, E., Nie, W.,
 Petäjä, T., Kerminen, V.-M., and Kulmala, M.: Ozone and fine particle in the western Yangtze
 River Delta: an overview of 1 yr data at the SORPES station, Atmos. Chem. Phys., 13, 5813–
- 27 5830, doi:10.5194/acp-13-5813- 2013, 2013.
- 28

29 Ding, A. J., Nie, W., Huang, X., Chi, X., Sun, J., Kerminen, V. M., Xu, Z., Guo, W., Petaja, T.,

- 1 Yang, X. Q., Kulmala, M., and Fu, C.: Long-term observation of air pollution-weather/climate
- 2 interactions at the SORPES station: A review and outlook, Front. Environ. Sci. Eng., 10,
- **3** doi:10.1007/s11783-016-0877-3, online first, 2016.
- 4
- 5 DMT: Cloud Condensation Nuclei Counter Operator Manual, DOC-0086 Rev G-1, Droplet
- 6 Measurement Technologies, Inc., p. 107, 2009
- 7
- 8 Dusek, U., Frank, G. P., Hildebrandt, L, Curtius, J., Schneider, J., Walter, S., Chand, D.,
- 9 Drewnick, F., Hings, S., Jung, D., Bormann, S., and Andreae, M. O.: Size matters more than
- 10 chemistry for cloud-nucleating ability of aerosol particles, Science, 312, 1375–1378, 2006.
- 11

Ervens, B., Cubison, M., Andrews, E., Feingold, G., Ogren, J. A., Jimenez, J. L., DeCarlo, P.,
and Nenes, A.: Prediction of cloud condensation nucleus number concentration using
measurements of aerosol size distributions and composition and light scattering enhancement
due to humidity, J. Geophys. Res.-Atmos., 112, D10S32, https://doi.org/10.1029/2006jd007426,
2007.

17

Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., Haywood, J., Lean,
J., Lowe, D. C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M., and Van Dorland, R.:
Changes in Atmospheric Constituents and in Radiative Forcing, in: Climate Change 2007: The
Physical Science Basis, contribution of Working Group I to the Fourth Assessment Report of
the Intergovernmental Panel on Climate Change, edited by: Solomon, S. D., Qin, M., Manning,
Z., Chen, M., Marquis, K. B., Averyt, M. T., and Miller, H. L., Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA, 129–134, 2007.

Ghan, S. J., Rissman, T. A., Elleman, R., Ferrare, R. A., Turner, D., Flynn, C., Wang, J., Ogren,
J., Hudson, J., Jonsson, H. H., VanReken, T., Flagan, R. C., and Seinfeld, J. H.: Use of in situ
cloud condensation nuclei, extinction, and aerosol size distribution measurements to test a
method for retrieving cloud condensation nuclei profiles from surface measurements, J.

1 Geophys. Res.- Atmos., 111, D05s10, https://doi.org/10.1029/2004jd005752, 2006.

2	
2	

- 3 Gogoi, M. M., S. S. Babu, V. Jayachandran, K. K. Moorthy, S. K. Satheesh, M. Naja, and V.
- 4 R. Kotamarthi (2015), Optical properties and CCN activity of aerosols in a high-altitude
- 5 Himalayan environment: Results from RAWEX-GVAX, J. Geophys. Res. Atmos., 120, 2453-
- 6 2469, doi:10.1002/2014JD022966.
- 7
- Hong, J., Häkkinen, S. A. K., Paramonov, M., Äijälä, M., Hakala, J., Nieminen, T., Mikkilä, J.,
 Prisle, N. L., Kulmala, M., Riipinen, I., Bilde, M., Kerminen, V.-M., and Petäjä, T.:
 Hygroscopicity, CCN and volatility properties of submicron atmospheric aerosol in a boreal
 forest environment during the summer of 2010, Atmos. Chem. Phys., 14, 4733-4748,
 https://doi.org/10.5194/acp-14-4733-2014, 2014.
- 13
- 14 Hudson, J. G.: Cloud condensation nuclei, J. Appl. Meteorol., 32, 596–607, 1993.
- 15
- 16 Hudson, J. G.: Variability of the relationship between particle size and cloud-nucleating ability,

17 Geophys. Res. Lett., 34, 08801, doi:10.1029/2006GL028850, 2007.

- 18
- 19 Jefferson, A.: Empirical estimates of CCN from aerosol optical properties at four remote sites,
- 20 Atmos. Chem. Phys., 10, 6855-6861, https://doi.org/10.5194/acp-10-6855-2010, 2010.
- 21

22 Jefferson, A.: Aerosol observing system (AOS) handbook, ARMTR-014, US Dep. of Energy,

- 23 Washington, D. C., 2011
- 24
- Kammermann, L., Gysel, M., Weingartner, E., Herich, H., Cziczo, D. J., Holst, T.,
 Svenningsson, B., Arneth, A., and Baltensperger, U.: Sub-arctic atmospheric aerosol
 composition 3: Measured and modeled properties of cloud condensation nuclei (CCN), J.
 Geophys. Res., 115, D04202, doi:10.1029/2009JD012447, 2010.
- 29

- 1 Kassianov, E., Barnard, J., Pekour, M., Berg, L. K., Shilling, J., Flynn, C., Mei, F., and Jefferson,
- 2 A.: Simultaneous retrieval of effective refractive index and density from size distribution and
- 3 light-scattering data: weakly absorbing aerosol, Atmos. Meas. Tech., 7, 3247-3261,
- 4 https://doi.org/10.5194/amt-7-3247-2014, 2014.
- 5
- 6 Kerminen, V.-M., Paramonov, M., Anttila, T., Riipinen, I., Fountoukis, C., Korhonen, H., Asmi,
- 7 E., Laakso, L., Lihavainen, H., Swietlicki, E., Svenningsson, B., Asmi, A., Pandis, S. N.,
 8 Kulmala, M., and Petäjä, T.: Cloud condensation nuclei production associated with atmospheric
- 9 nucleation: a synthesis based on existing literature and new results, Atmos. Chem. Phys., 12,
- 10 12037-12059, https://doi.org/10.5194/acp-12-12037-2012, 2012.
- 11
- 12 Kuang, C.: TSI Model 3936 Scanning Mobility Particle Spectrometer Instrument Handbook,
- 13 United States, doi:10.2172/1245993, <u>https://www.osti.gov/servlets/purl/1245993</u>, 2016.
- 14
- Kulmala, M., Laaksonen, A., Korhonen, P., Vesala, T., Ahonen, T., and Barrett, J. C.: The effect
 of atmospheric nitric acid vapor on cloud condensation nuclei activation, J. Geophys. Res., 98,
 22949–22958, 1993.
- 18
- Kulmala, M., Vehkamäki, H., Petäjä, T., Dal Maso, M., Lauri, A., Kerminen, V.M., Birmili, W.
 and McMurry, P.H.: Formation and growth rates of ultrafine atmospheric particles: A review of
 observations, J. Aerosol Sci., 35, 143–176, 2004
- Liu, J. and Li, Z.: Estimation of cloud condensation nuclei concentration from aerosol optical
 quantities: influential factors and uncertainties, Atmos. Chem. Phys., 14, 471–483,
 https://doi.org/10.5194/acp-14-471-2014, 2014.
- 26
- Luoma, K., Virkkula, A., Aalto, P., Petäjä, T., and Kulmala, M.: Over a ten-year record of
 aerosol optical properties at SMEAR II, Atmos. Chem. Phys. Discuss.,
 https://doi.org/10.5194/acp-2018-981, in review, 2018.

29

1	
2	Ma, N., Birmili, W., Müller, T., Tuch, T., Cheng, Y. F., Xu, W. Y., Zhao, C. S., and Wiedensohler,
3	A.: Tropospheric aerosol scattering and absorption over central Europe: a closure study for the
4	dry particle state, Atmos. Chem. Phys., 14, 6241-6259, https://doi.org/10.5194/acp-14-6241-
5	2014, 2014.
6	
7	Ma, N., Zhao, C., Tao, J., Wu, Z., Kecorius, S., Wang, Z., Größ, J., Liu, H., Bian, Y., Kuang, Y.,
8	Teich, M., Spindler, G., Müller, K., van Pinxteren, D., Herrmann, H., Hu, M., and Wiedensohler,
9	A.: Variation of CCN activity during new particle formation events in the North China Plain,
10	Atmos. Chem. Phys., 16, 8593-8607, https://doi.org/10.5194/acp-16-8593-2016, 2016.
11	
12	Mather, J. H. and Voyles, J. W.: The Arm Climate Research Facility: A Review of Structure and
13	Capabilities, Bull. Amer. Meteor. Soc., 94, 377-392, 2013.
14	
15	Meng, J. W., Yeung, M. C., Li, Y. J., Lee, B. Y. L., and Chan, C. K.: Size-resolved cloud
16	condensation nuclei (CCN) activity and closure analysis at the HKUST Supersite in Hong Kong,
17	Atmos. Chem. Phys., 14, 10267-10282, https://doi.org/10.5194/acp-14-10267-2014, 2014.
18	
19	Paramonov , M , Kerminen , V -M , Gysel , M , Aalto , P P , Andreae , M O , Asmi , E ,
20	Baltensperger , U , Bougiatioti , A , Brus , D , Frank , G P , Good , N , Gunthe , S S , Hao , L ,
21	Irwin, M, Jaatinen, A, Juranyi, Z, King, SM, Kortelainen, A, Kristensson, A, Lihavainen,
22	H , Kulmala , M , Lohmann , U , Martin , S T , McFiggans , G , Mihalopoulos , N , Nenes , A ,
23	O'Dowd , C D , Ovadnevaite , J , Petaja , T , Poschl , U , Roberts , G C , Rose , D , Svenningsson ,
24	B , Swietlicki , E , Weingartner , E , Whitehead , J , Wiedensohler , A , Wittbom , C & Sierau ,
25	B 2015 , 'A synthesis of cloud condensation nuclei counter (CCNC) measurements within the
26	EUCAARI network 'Atmospheric Chemistry and Physics, vol. 15, no. 21, pp. 12211-12229.
27	https://doi.org/10.5194/acp-15-12211-2015.
28	

25

Petters, M. D., and S. M. Kreidenweis, S. M.: A single parameter representation of hygroscopic

- 1 growth and cloud condensation nucleus activity Atmos. Chem. Phys., 7, 1961-1971,
- 2 doi:10.5194/acp-7-1961-2007, 2007.
- 3
- 4 Pringle, K. J., Tost, H., Pozzer, A., Pöschl, U., and Lelieveld, J.: Global distribution of the
- 5 effective aerosol hygroscopicity parameter for CCN activation, Atmos. Chem. Phys., 10, 5241-
- 6 5255, https://doi.org/10.5194/acp-10-5241-2010, 2010.
- 7
- 8 Pöhlker, M. L., Pöhlker, C., Ditas, F., Klimach, T., Hrabe de Angelis, I., Araújo, A., Brito, J.,
- 9 Carbone, S., Cheng, Y., Chi, X., Ditz, R., Gunthe, S. S., Kesselmeier, J., Könemann, T., Lavrič,
- 10 J. V., Martin, S. T., Mikhailov, E., Moran-Zuloaga, D., Rose, D., Saturno, J., Su, H., Thalman,
- 11 R., Walter, D., Wang, J., Wolff, S., Barbosa, H. M. J., Artaxo, P., Andreae, M. O., and Pöschl,
- 12 U.: Long-term observations of cloud condensation nuclei in the Amazon rain forest Part 1:
- 13 Aerosol size distribution, hygroscopicity, and new model parametrizations for CCN prediction,
- 14 Atmos. Chem. Phys., 16, 15709-15740, https://doi.org/10.5194/acp-16-15709-2016, 2016.
- 15
- 16 Qi, X. M., Ding, A. J., Nie, W., Petäjä, T., Kerminen, V.-M., Herrmann, E., Xie, Y. N., Zheng,
- 17 L. F., Manninen, H., Aalto, P., Sun, J. N., Xu, Z. N., Chi, X. G., Huang, X., Boy, M., Virkkula,
- A., Yang, X.-Q., Fu, C. B., and Kulmala, M.: Aerosol size distribution and new particle
 formation in the western Yangtze River Delta of China: 2 years of measurements at the
 SORPES station, Atmos. Chem. Phys., 15, 12445-12464, https://doi.org/10.5194/acp-1512445-2015, 2015.
- 22

Rose, D., Gunthe, S. S., Mikhailov, E., Frank, G. P., Dusek, U., Andreae, M. O., and Pöschl, U.:
Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei
counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol
particles in theory and experiment, Atmos. Chem. Phys., 8, 1153-1179,
https://doi.org/10.5194/acp-8-1153-2008, 2008.

- 28
- 29 Schmale, J., Henning, S., Henzing, B., Keskinen, H., Sellegri, K., Ovadnevaite, J., Bougiatioti,

1 A., Kalivitis, N., Stavroulas, I., Jefferson, A., Park, M., Schlag, P., Kristensson, 2 K., Reddington, C., Aalto, P., Äijälä, A., Iwamoto, Y., Pringle, М., 3 Baltensperger, U., Bialek, J., Birmili, W., Bukowiecki, N., Ehn, M., Fjæraa, A. M., Fiebig, 4 M., Frank, G., Fröhlich, R., Frumau, A., Furuya, M., Hammer, E., Heikkinen, L., Herrmann, E., 5 Holzinger, R., Hyono, H., Kanakidou, M., Kiendler-Scharr, A., Kinouchi, K., Kos, G., Kulmala, 6 M., Mihalopoulos, N., Motos, G., Nenes, A., O'Dowd, C., Paramonov, M., Petäjä, T., Picard, 7 D., Poulain, L., Prévôt, A. S. H., Slowik, J., Sonntag, A., Swietlicki, E., Svenningsson, B., 8 Tsurumaru, H., Wiedensohler, A., Wittbom, C., Ogren, J. A., Matsuki, A., Yum, S. S., Myhre, 9 C. L., Carslaw, K., Stratmann, F. and Gysel, M.: Collocated observations of cloud 10 condensation nuclei, particle size distributions, and chemical composition, Sci. 11 Data, 4, 170003, doi:10.1038/sdata.2017.3, 2017a. 12 13 Schmale, J., Henning, S., Decesari, S., Henzing, B., Keskinen, H., Sellegri, K., Ovadnevaite, J.,

- 14 Pöhlker, M. L., Brito, J., Bougiatioti, A., Kristensson, A., Kalivitis, N., Stavroulas, I., Carbone, S., Jefferson, A., Park, M., Schlag, P., Iwamoto, Y., Aalto, P., Äijälä, M., Bukowiecki, N., Ehn, 15 16 M., Frank, G., Fröhlich, R., Frumau, A., Herrmann, E., Herrmann, H., Holzinger, R., Kos, G., 17 Kulmala, M., Mihalopoulos, N., Nenes, A., O'Dowd, C., Petäjä, T., Picard, D., Pöhlker, C., 18 Pöschl, U., Poulain, L., Prévôt, A. S. H., Swietlicki, E., Andreae, M. O., Artaxo, P., 19 Wiedensohler, A., Ogren, J., Matsuki, A., Yum, S. S., Stratmann, F., Baltensperger, U., and 20 Gysel, M.: Long-term cloud condensation nuclei number concentration, particle number size 21 distribution and chemical composition measurements at regionally representative observatories, 22 Atmos. Chem. Phys., 18, 2853-2881, https://doi.org/10.5194/acp-18-2853-2018, 2018.
- 23
- Schwartz, S. E., Charlson, R. J., Kahn, R. A., Ogren, J. A., and Rodhe, H.: Why hasn't Earth
 warmed as much as expected?, J. Climate, 23, 2453–2464, 2010.
- 26
- 27 Shen, Y., Virkkula, A., Ding, A., Wang, J., Chi, X., Nie, W., Qi, X., Huang, X., Liu, Q., Zheng,
- 28 L., Xu, Z., Petäjä, T., Aalto, P. P., Fu, C., and Kulmala, M.: Aerosol optical properties at
- 29 SORPES in Nanjing, east China, Atmos. Chem. Phys., 18, 5265-5292,

- 1 https://doi.org/10.5194/acp-18-5265-2018, 2018.
- 2
- 3 Shinozuka, Y., Clarke, A. D., DeCarlo, P. F., Jimenez, J. L., Dunlea, E. J., Roberts, G. C.,
- Tomlinson, J. M., Collins, D. R., Howell, S. G., Kapustin, V. N., McNaughton, C. S., and Zhou,
 J.: Aerosol optical properties relevant to regional remote sensing of CCN activity and links to
 their organic mass fraction: airborne observations over Central Mexico and the US West Coast
 during MILAGRO/INTEX-B, Atmos. Chem. Phys., 9, 6727-6742, https://doi.org/10.5194/acp9-6727-2009, 2009.
- 9
- 10 Shinozuka, Y., Clarke, A. D., Nenes, A., Jefferson, A., Wood, R., McNaughton, C. S., Ström, 11 J., Tunved, P., Redemann, J., Thornhill, K. L., Moore, R. H., Lathem, T. L., Lin, J. J., and Yoon, 12 Y. J.: The relationship between cloud condensation nuclei (CCN) concentration and light 13 extinction of dried particles: indications of underlying aerosol processes and implications for 14 satellitebased CCN estimates, Atmos. Chem. Phys., 15, 7585-7604, https://doi.org/10.5194/acp-15-7585-2015, 2015 15
- 16
- Sihto, S.-L., Kulmala, M., Kerminen, V.-M., Dal Maso, M., Petäjä, T., Riipinen, I., Korhonen,
 H., Arnold, F., Janson, R., Boy, M., Laaksonen, A., and Lehtinen, K. E. J.: Atmospheric
 sulphuric acid and aerosol formation: implications from atmospheric measurements for
 nucleation and early growth mechanisms, Atmos. Chem. Phys., 6, 4079-4091,
 https://doi.org/10.5194/acp-6-4079-2006, 2006.
- 22

Sihto, S.-L., Mikkila, J., Vanhanen, J., Ehn, M., Liao, L., Lehtipalo, "K., Aalto, P. P., Duplissy,
J., Petaj" a, T., Kerminen, V.-M., Boy, "M., and Kulmala, M.: Seasonal variation of CCN
concentrations and aerosol activation properties in boreal forest, Atmos. Chem. Phys., 11,
13269–13285, doi:10.5194/acp-11-13269-2011, 2011.

27

28 Tao, J., Zhao, C., Kuang, Y., Zhao, G., Shen, C., Yu, Y., Bian, Y., and Xu, W.: A new method

29 for calculating number concentrations of cloud condensation nuclei based on measurements of

1	a three-wavelength humidified nephelometer system, Atmos. Meas. Tech., 11, 895-906,
2	https://doi.org/10.5194/amt-11-895-2018, 2018.
3	
4	Twomey, S.: The influence of cloud nucleus population on the microstructure and stability of
5	convective clouds, Tellus, 11, 408-411, 1959.
6	
7	Uin, J.: Integrating Nephelometer Instrument Handbook, United States. doi:10.2172/1246075.
8	https://www.osti.gov/servlets/purl/1246075, 2016a
9	
10	Uin, J.: Cloud Condensation Nuclei Particle Counter (CCN) Instrument Handbook, United
11	States. doi:10.2172/1251411. https://www.osti.gov/servlets/purl/1251411, 2016b
12	
13	Virkkula, A., Backman, J., Aalto, P. P., Hulkkonen, M., Riuttanen, L., Nieminen, T., dal Maso,
14	M., Sogacheva, L., de Leeuw, G., and Kulmala, M.: Seasonal cycle, size dependencies, and
15	source analyses of aerosol optical properties at the SMEAR II measurement station in Hyytiälä,
16	Finland, Atmos. Chem. Phys., 11, 4445-4468, https://doi.org/10.5194/acp-11-4445-2011, 2011.
17	
18	Wang, J., Cubison, M. J., Aiken, A. C., Jimenez, J. L., and Collins, D. R.: The importance of
19	aerosol mixing state and size-resolved composition on CCN concentration and the variation of
20	the importance with atmospheric aging of aerosols, Atmos. Chem. Phys., 10, 7267-7283,
21	doi:10.5194/acp-10-7267-2010, 2010.
22	
23	
24	
25	
26	
27	
28	
29	

1 Tables

2

3 Table 1. Site and data description

	Period	Location	CCN		Size distribution		AOPs	
Dataset			Instrument	SS%	Instrument	size range	Instrument	inlet
SMEAR II	2016.1.1- 2016.12.31	61° 51' N, 24° 17' E 179m	CCN-100	0.1%, 0.2%, 0.5% and 1.0%	custom-made DMPS	3-1000nm	TSI-3563 Nephelometer	PM1, PM10
SORPES	2016.06.01- 2017.05.31	32°07' N, 118°56' E 40m	CCN-200	0.1%, 0.2%, 04%, and 0.8%	custom-made DMPS	6-800nm	Aurora-3000 Nephelometer	TSP
PGH ^a	2011.11.01- 2013.03.25	29° 22' N, 79° 27'E 1936m	CCN-100	0.12%, 0.22%, 0.48% and 0.78%	NA	NA	TSI-3563 Nephelometer	PM1, PM10
PVC^{b}	2012.07.16- 2012.09.30	42° 2' N, 70° 3' W 43m	CCN-100	0.15%, 0.25%, 0.4% and 1.0%	SMPS TSI-3936	11-465nm*	TSI-3563 Nephelometer	PM1, PM10
MAO ^c	2014.01.29- 2014.12.31	3° 13' S, 60° 36' W 50m	CCN-100	0.25%, 0.4%, 0.6% and 1.1%	SMPS TSI-3936	11-465nm*	TSI-3563 Nephelometer	PM1, PM10
ASI ^d	2016.06.01- 2017.10.19	7° 58' S, 14° 21' W 341m	CCN-100	0.15%, 0.25%, 0.4%, and 0.8%	SMPS TSI-3936	11-465nm*	TSI-3563 Nephelometer	PM1, PM10

^a products used: aipavg1ogrenM1.c1., and aosccnavgM1.c2.

^b products used: aipavg1ogrenM1.s1., noaaaosccn100M1.b1., and aossmpsS1.a1.

^c products used: aip1ogrenM1.c1., aosccn1colM1.b1., and aossmpsS1.a1.

^d products used: aosnephdryM1.b1., aosccn2colaavgM1.b1., and aossmpsM1.a1.

* may vary slightly

4 5

6

7

8

- 1 Table 2. The slopes and offsets of the linear regressions of $R_{CCN/\sigma}$ vs. BSF at the different
- 2 supersaturation SS% at the studied sites. s.e.: standard error of the respective coefficient
- 3 obtained from the linear regressions.

		$R_{CCN/\sigma} = aBSF + b$			
SITE	SS%	a ± s.e.	b ±s.e.		
SMEAR II	0.10%	91 ± 3	-2.9 ± 0.4		
	0.20%	433 ± 5	-39 ± 0.7		
	0.50%	867 ± 10	-86 ± 1.5		
	1.00%	1155 ± 17	-116 ± 2.5		
SORPES	0.10%	62 ± 2	-2.6 ± 0.2		
	0.20%	266 ± 4	-18 ± 0.4		
	0.40%	531 ± 7	-39 ± 0.8		
	0.80%	738 ± 11	-56 ± 1.2		
PGH	0.12%	-18 ± 1	2.6 ± 0.1		
	0.22%	24 ± 3	2.8 ± 0.2		
	0.48%	244 ± 12	-4.4 ± 0.8		
	0.78%	344 ± 14	-8.3 ± 1.0		
PVC	0.15%	417 ± 9	-30 ± 1.1		
	0.25%	793 ± 17	-62 ± 2.1		
	0.40%	1176 ± 25	-95 ± 3.1		
	1.00%	1945 ± 43	-161 ± 5.3		
MAO	0.25%	273 ± 5	-19 ± 0.7		
	0.40%	544 ± 8	-43 ± 1.2		
	0.60%	678 ± 13	-51 ± 1.8		
	1.10%	868 ± 32	-58 ± 4.3		
ASI	0.15%	22 ± 2	2.2 ± 0.2		
	0.25%	105 ± 3	-3.6 ± 0.5		
	0.40%	127 ± 4	-5.0 ± 0.6		
	0.80%	136 ± 4	-4.0 ± 0.6		

- 1 Table 3. The coefficients a_0 , a_1 , b_0 and b_1 obtained from the fitting of $a = a_1 ln(SS\%) + a_0$ and b
- $2 = b_1 ln(SS\%) + b_0 \text{ with the data in Table 2. The unit of the coefficients is } [N_{CCN}] / [\sigma_{sp}] = cm^{-3} / Mm^{-1}.$
- 3 s.e.: standard error of the respective coefficient obtained from the regressions.

	$R_{CCN/\sigma} = (a$	₁ <i>ln(</i> SS%) + a	SAE ₁₀			
	a 1 ± s.e.	a ₀ ± s.e.	b₁ ± s.e.	b ₀ ± s.e.	average ± std	median
SMEAR II	464 ± 11	1170 ± 16	-49 ± 1.5	-118 ± 2.1	2.11 ± 0.67	2.22
SORPES	331 ± 12	817 ± 18	-26 ± 0.9	-62 ± 1.4	1.45 ± 0.33	1.50
PGH	205 ± 30	385 ± 41	-6.3 ± 1.5	-9.1 ± 2.0	0.53 ± 0.30	0.57
PVC	810 ± 17	1933 ± 21	-70 ± 1.7	-160 ± 2.1	1.79 ± 0.52	1.91
MAO	393 ± 45	858 ± 40	-25 ± 6.6	-60 ± 5.8	1.00 ± 0.55	1.09
ASI	64 ± 25	168 ± 31	-3 ± 2.2	-6 ± 2.7	0.73 ± 0.41	0.64
ASI	64 ± 25	168 ± 31	-3 ± 2.2	-6 ± 2.7	0.73 ± 0.41	0.6

4 5

6

7

1 FIGURES

3 Figure 1. Measured CCN number concentration N_{CCN} (meas) vs. PM₁₀ scattering coefficient σ_{sp}

4 at λ = 550 nm at SMEAR II at four supersaturations (SS%): a) 0.1 %, b) 0.2 %, c) 0.5 % and d)

5 1.0 %. Colorcoding: backscattering fraction(BSF) at λ = 550 nm.

6

7

2

8 Figure 2. Relationship between $R_{CCN/\sigma}$ (= N_{CCN} (meas)/ σ_{sp}) and BSF at SMEAR II at four 9 supersaturations (SS%): a) 0.1 %, b) 0.2 %, c) 0.5 % and d) 1.0 %. Grey symbols: all data, red 10 symbols: data at $\sigma_{sp} > 10 \text{ Mm}^{-1}$. Both σ_{sp} and BSF were measured at $\lambda = 550 \text{ nm}$.

- 1 2
 - Figure 3. Comparison between $N_{CCN}(AOP_1)$ and $N_{CCN}(meas)$ at SMEAR II. $N_{CCN}(AOP)$ was
- 3 calculated by using the constants a and b in Table 2 for each supersaturation.

- 4
- 5 Figure 4. **N**_{CCN} (AOP₁) vs. **N**_{CCN} (meas) at a) SORPES, b) MAO, c) PVC, d) ASI and e) PGH. **N**_{CCN}(AOP)

6 was calculated by using the constants a and b in Table 2 for each supersaturation.

- 1
- 2 Figure 5. The coefficients a and b of each station (Table 2) as a function of supersaturation.
- 3

4

- 6 stations. a) $a_0 vs. a_1$, b) $b_0 vs. b_1$, c) $b_1 vs. a_1$, d) $b_0 vs. a_0$.
- 7
- 8

9

2 Figure 7. Relationship of the a_1 coefficient in Equation (6) with the average a) geometric mean

3 diameter of the PNSD data size ranges of the sites, b) volume mean diameter of the same size

- 4 range, and c) PM₁₀ scattering Ångström exponent (SAE10).
- 5

1

6

7 Figure 8. Statistics of $N_{CCN}(AOP_2)$ from parameterization 2. $N_{CCN}(AOP_2)$ vs. $N_{CCN}(meas)$ at 8 different sites at relatively (a) low and (b) high supersaturations, (c) bias = $N_{CCN}(AOP_2)/N_{CCN}$ 9 (meas) at different sites and supersaturations, and (d) R^2 of the linear regression of $N_{CCN}(AOP_2)$ 10 vs. N_{CCN} (meas) at different sites and supersaturations.

1

- 2 Figure 9. Size distribution of a) $R_{CCN/\sigma}$ and b) backscatter fraction BSF (λ = 550 nm) of simulated
- 3 narrow (GSD = 1.5) and wide (GSD = 2.0) unimodal size distributions. GMD: geometric mean
- 4 diameter, GSD: geometric standard deviation.

5

6 Figure 10. Linear regressions of $R_{CCN/\sigma}$ vs backscatter fraction BSF (λ = 550 nm) of simulated 7 unimodal a) narrow (GSD = 1.5) and b) wide (GSD = 2.0) size distributions. The regressions 8 were calculated assuming that the data consist of size distributions with GMD ranging from 50 9 to 100 nm and 100 to 200 nm.

1

Figure 11. Size distributions of the coefficients of the linear regressions of $R_{CCN/\sigma}(\lambda = 550 \text{ nm})$ s backscatter fraction BSF ($\lambda = 550 \text{ nm}$) of narrow and wide size distributions. a) slopes of $R_{CCN/\sigma}$ vs. BSF, b) offsets of $R_{CCN/\sigma}$ vs. BSF. $R_{CCN/\sigma}$ was calculated assuming particles larger than 90 nm get activated. The regressions were calculated for 5 consequtive size distributions. GMD_e is the geometric mean of the range of the unimodal size distributions used for the regressions.

1

Figure 12. a) Relationships of the slopes and offsets of the linear regressions $R_{CCN/\sigma} = aBSF + b$ of the simulated unimodal narrow (GSD = 1.5) and wide (GSD = 2.0) size distributions and those obtained from the similar regressions of the station data at low and high supersaturations (Table 2). b) Equivalent geometric mean diameter (GMD_e) of the unimodal modes used for the linear regression vs. the slope of the linear regression of $R_{CCN/\sigma}$ vs. BSF. The vertical error bars show the ranges of the GMDs of the unimodal size distributions used in the respective linear regressions.

10

2

normalized frequency distribution of $\sigma_{sp}(PM_1)/\sigma_{sp}(PM_{10})$ at SMEAR II, PVC, MAO, PGH and ASI.